首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27871篇
  免费   3540篇
  国内免费   5727篇
化学   31503篇
晶体学   166篇
力学   628篇
综合类   161篇
数学   1002篇
物理学   3678篇
  2024年   28篇
  2023年   408篇
  2022年   596篇
  2021年   908篇
  2020年   1503篇
  2019年   1159篇
  2018年   1260篇
  2017年   1145篇
  2016年   1328篇
  2015年   1340篇
  2014年   1836篇
  2013年   2794篇
  2012年   1714篇
  2011年   2001篇
  2010年   1570篇
  2009年   1713篇
  2008年   1847篇
  2007年   1925篇
  2006年   1773篇
  2005年   1644篇
  2004年   1627篇
  2003年   1334篇
  2002年   727篇
  2001年   574篇
  2000年   554篇
  1999年   459篇
  1998年   401篇
  1997年   399篇
  1996年   360篇
  1995年   375篇
  1994年   287篇
  1993年   232篇
  1992年   226篇
  1991年   155篇
  1990年   130篇
  1989年   114篇
  1988年   91篇
  1987年   59篇
  1986年   54篇
  1985年   60篇
  1984年   53篇
  1983年   33篇
  1982年   41篇
  1981年   39篇
  1980年   31篇
  1979年   28篇
  1978年   28篇
  1977年   31篇
  1976年   38篇
  1974年   38篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
21.
In this study, we investigated an alternative method for the chemical CO2 reduction reaction in which power ultrasound (488 kHz ultrasonic plate transducer) was applied to CO2-saturated (up to 3%) pure water, NaCl and synthetic seawater solutions. Under ultrasonic conditions, the converted CO2 products were found to be mainly CH4, C2H4 and C2H6 including large amount of CO which was subsequently converted into CH4. We have found that introducing molecular H2 plays a crucial role in the CO2 conversion process and that increasing hydrogen concentration increased the yields of hydrocarbons. However, it was observed that at higher hydrogen concentrations, the overall conversion decreased since hydrogen, a diatomic gas, is known to decrease cavitational activity in liquids. It was also found that 1.0 M NaCl solutions saturated with 2% CO2 + 98% H2 led to maximum hydrocarbon yields (close to 5%) and increasing the salt concentrations further decreased the yield of hydrocarbons due to the combined physical and chemical effects of ultrasound. It was shown that CO2 present in a synthetic industrial flue gas (86.74% N2, 13% CO2, 0.2% O2 and 600 ppm of CO) could be converted into hydrocarbons through this method by diluting the flue gas with hydrogen. Moreover, it was observed that in addition to pure water, synthetic seawater can also be used as an ultrasonicating media for the sonochemical process where the presence of NaCl improves the yields of hydrocarbons by ca. 40%. We have also shown that by using low frequency high-power ultrasound in the absence of catalysts, it is possible to carry out the conversion process at ambient conditions i.e., at room temperature and pressure. We are postulating that each cavitation bubble formed during ultrasonication act as a “micro-reactor” where the so-called Sabatier reaction -CO2+4H2UltrasonicationCH4+2H2O - takes place upon collapse of the bubble. We are naming this novel approach as the “Islam-Pollet-Hihn process”.  相似文献   
22.
The great challenge for modern research is to define the most efficient tools to make more sustainable the industrial production and manufacturing. Among the different aspects that require attention the replacement of toxic and/or non-renewable solvents it is certainly playing a crucial role. Dealing with widely used dipolar aprotic solvents, among the different alternatives proposed in the literature γ-valerolactone (GVL) plays a pivotal role covering different application area. In this contribution, the benefits derived from the use of GVL as a circular, safe, biomass-derived reaction medium are highlighted covering most recent publications (2021). The presentation has been divided into three major sections: (i) biomass valorization, (ii) materials synthesis, manufacturing and recycle and (iii) new synthetic methodologies.  相似文献   
23.
The N–N bond is present in many important organic compounds, such as hydrazines, pyrazoles, azos, etc. Many methods based on transition metal catalyzed N–N coupling or functionalization of hydrazine have been reported for the synthesis of N–N containing organic compounds. In recent years, electrochemical dehydrogenative N–H/N–H coupling has become a powerful tool for the construction of N–N bearing organic compounds. The electrochemical methods employ electrons as traceless redox reagents instead of chemicals and produce hydrogen as the only byproduct. In this review, we summarize the recent advances in the electrochemical dehydrogenative N–H/N–H coupling reactions with focus on the mechanistic insights and synthetic applications of these transformations.  相似文献   
24.
Yutuo Guo 《中国物理 B》2022,31(7):76105-076105
Direct visualization of the structural defects in two-dimensional (2D) semiconductors at a large scale plays a significant role in understanding their electrical/optical/magnetic properties, but is challenging. Although traditional atomic resolution imaging techniques, such as transmission electron microscopy and scanning tunneling microscopy, can directly image the structural defects, they provide only local-scale information and require complex setups. Here, we develop a simple, non-invasive wet etching method to directly visualize the structural defects in 2D semiconductors at a large scale, including both point defects and grain boundaries. Utilizing this method, we extract successfully the defects density in several different types of monolayer molybdenum disulfide samples, providing key insights into the device functions. Furthermore, the etching method we developed is anisotropic and tunable, opening up opportunities to obtain exotic edge states on demand.  相似文献   
25.
Ni Suo 《中国物理 B》2022,31(12):128108-128108
Proton-exchange membrane fuel cells (PEMFCs) have been widely used commercially to solve the energy crisis and environmental pollution. The oxygen reduction reaction (ORR) at the cathode is the rate-determining step in PEMFCs. Platinum (Pt) catalysts are used to accelerate the ORR kinetics. Pt's scarcity, high cost, and instability in an acidic environment at high potentials seriously hinder the commercialization of PEMFCs. Therefore, studies should explore electrocatalysts with high catalytic activity, enhanced stability, and low-Pt loading. This review briefly introduces the research progress on Pt and Pt-based ORR electrocatalysts for PEMFCs, including anticorrosion catalyst supports, Pt, and Pt-based alloy electrocatalysts. Advanced preparation technology and material characterization of Pt-based ORR electrocatalysts are necessary to improve the performance and corresponding reaction mechanisms.  相似文献   
26.
Asymmetric desymmetrization has been demonstrated to be a powerful strategy for building stereocenters in asymmetric synthesis. Herein, a Pd/Cu catalyzed asymmetric desymmetrization reaction with a simple geminal dicarboxylate is reported. A wide scope of imino esters bearing an aryl or heteroaromatic group were compatible with this bimetallic catalytic system. The reactions proceeded smoothly, giving the desired products in good yields with high to excellent regio-, diastereo-, and enantioselectivity (up to 20 : 1 branched:linear, >20 : 1 dr, >99 % ee). Notably, the reaction favored branched selectivity, which is unusual for the Pd-catalyzed allylic alkylation reaction. In addition, the standard product could be easily transformed to other valuable molecules such as chiral allylic alcohols, carbamates, and organic boron compounds. Furthermore, DFT calculations were conducted to explain the origin of the branched selectivity.  相似文献   
27.
Molecular syntheses largely rely on time‐ and labour‐intensive prefunctionalization strategies. In contrast, C?H activation represents an increasingly powerful approach that avoids lengthy syntheses of prefunctionalized substrates, with great potential for drug discovery, the pharmaceutical industry, material sciences, and crop protection, among others. The enantioselective functionalization of omnipresent C?H bonds has emerged as a transformative tool for the step‐ and atom‐economical generation of chiral molecular complexity. However, this rapidly growing research area remains dominated by noble transition metals, prominently featuring toxic palladium, iridium and rhodium catalysts. Indeed, despite significant achievements, the use of inexpensive and sustainable 3d metals in asymmetric C?H activations is still clearly in its infancy. Herein, we discuss the remarkable recent progress in enantioselective transformations via organometallic C?H activation by 3d base metals up to April 2019.  相似文献   
28.
A variety of heterobiaryl compounds have been synthesized by the Suzuki‐Miyaura coupling reactions of heteroaryl halides with potassium aryltrifluoroborates. Pd (OAc)2 was found to be highly efficient for the Suzuki‐Miyaura coupling reactions of various heteroaryl halides with potassium aryltrifluoroborates in aqueous systems, delivering the corresponding heterobiaryl compounds in good to excellent yields.  相似文献   
29.
A novel heterogeneous nanocatalyst was established by supporting molybdenum (VI) on Zr6 nodes in the structure of the well‐known UiO‐66 metal–organic framework (MOF). The structure of the UiO‐66 before and after Mo (VI) immobilization was confirmed with XRD, DR‐FTIR and UV–vis spectroscopy, and the presence and amount of Mo (VI) was identified by X‐ray photoelectron spectroscopy and inductively coupled plasma atomic emission spectroscopy. TEM imaging confirmed the absence of Mo clusters on the MOF surface, while SEM confirmed that the appearance of the MOF has not changed upon immobilizing the Mo (VI) catalyst. BET adsorption measurements were used to confirm the porosity of the catalyst. The catalytic activity of this heterogeneous catalyst was investigated in oxidation of sulfides with H2O2 in acetonitrile and oxidative desulfurization of dibenzothiophene. Easy work up, convenient and steady reuse and high activity and selectivity are prominent properties of this new hybrid material.  相似文献   
30.
We present novel inorganic–organic hybrid catalyst to accomplish domino multi‐component reaction (MCR) for synthesis of 3‐amino‐2′‐oxospiro[benzo[c]pyrano[3,2‐a]phenazine‐1,3′‐indoline]‐2‐carbonitrile/carboxylate derivatives. This methodology offers remarkable development by easy production of H3PMo12O40/Hyd‐SBA‐15 in regard to solving the problem of using harsh catalysts, also it demonstrates to be impressive and environmentally friendly in term of low reaction times and high yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号